Even though two-dimensional arrays are similar to matrices from linear algebra, operations ( such as multiply) have nothing to do with the operations in linear algebra ( such as matrix multiplication). 虽然二维数组与线性代数中的矩阵类似,但是对它们的操作(比如乘)与线性代数中的操作(比如矩阵乘)是完全不同的。
For me that matrix multiply this matrix multiplication say that I take one of that column and two of that column and add. 对于我来讲,那个矩阵乘以这个矩阵表示我取一倍的那个列和两倍的那个列然后相加。
So that's matrix multiplication. ,好,这就是矩阵乘法。
A parallel algorithm for matrix multiplication based on optical transpose interconnection system ( OTIS) network is proposed, and the time complexity is analyzed. 提出基于光交换互连系统(OTIS)网络结构的矩阵乘并行算法,分析它的时间复杂性。
And we can reformulate this in terms of matrix multiplication or matrix product. 我们可以用,矩阵乘法或矩阵乘积的形式来表述这些式子。
An Analytic Iteration Method of Geometrical Nonlinear Analysys; Using Model and Iterative Compilation to Optimize Matrix Multiplication Applications 几何非线性分析的解析迭代法及应用程序研究结合模型和迭代编译优化矩阵相乘程序
The simplification matter of matrix multiplication is settled thoroughly in the way given in the paper. 彻底解决了矩阵乘法计算的简化问题。
In this paper, we implement an efficient matrix multiplication on GPU using NVIDIA's CUDA. 本文使用NVIDIA的CUDA在GPU上实现了一个高效的矩阵乘法。
Shortest Path Problem Algorithm in Network Based on Matrix Multiplication 基于矩阵乘法的网络最短路径算法
This code solves the problem of complex matrix multiplication, I hope all of you to help! 此代码解决了复矩阵相乘的问题,希望对大家有所帮助!
This paper introduces the basic idea and algorithm of sparse Matrix multiplication by using incompact storage method. 介绍了对稀疏矩阵进行压缩存储时,稀疏矩阵相乘运算的基本思想和算法。
From partition row ( column) rule to partition Brock rule of matrix multiplication 从矩阵乘法的分行(列)律到分块律
But, remember that the product of matrix multiplication is dependent on the order of the operands. 不过,记住矩阵乘法的结果是依赖于操作数的顺序的。
Using Model and Iterative Compilation to Optimize Matrix Multiplication Applications 结合模型和迭代编译优化矩阵相乘程序
Source and meaning of Matrix Multiplication 矩阵乘法的来源和意义
Linear transformation and matrix multiplication 线性替换与矩阵乘法
Because the number of data in image processing is very huge, and the existence of convolution operation and matrix multiplication, it is possible that parallel algorithm design and implement can be used in image processing. 由于图像处理过程中的数据量巨大,而且各种算法中大量卷积运算和矩阵乘法运算的存在,就为图像处理过程中的并行算法设计和实现提供了可能。
Walsh-Hadamard matrices with six different ordering are constructed recursively by using direct product and matrix multiplication. 本文用直积和矩阵相乘的方法构造了六种不同的沃尔什-阿达马矩阵。
A parallel algorithm for matrix multiplication is proposed according to the characteristic of matrix multiplication. 本文根据矩阵相乘的特点,提出了矩阵相乘的并行算法。
A method of optical matrix multiplication using Modified Signed-Digit ( MSD) arithmetic and multi-window decoding optical symbolic substitution rule is proposed and realized. 本文提出并实现了一种利用改进的符号数(MSD)算法和多窗口解码光学符号代换法则(MW-OSSR)实现多比特矩阵相乘的光学方法,它具有精度高和速度快的特点。
On the other hand, we study asymptotically fast algorithm for rectangular matrix multiplication. 本文还研究了矩阵乘法的渐近快速算法。
A decoding algorithm based on π transform and fast Hadamard transform changes the matrix multiplication to the addition, subtraction and position exchanging among the matrix elements, so reduces the demand of the instrument for computer. 基于π变换和快速阿达玛变换的解码算法,将矩阵乘法简化为矩阵元素间的加、减运算和位置交换,降低了仪器对微机系统的要求。
After introducing the concept of parallel processing and parallel algorithm, we studied the matrix multiplication parallel processing techniques in distributed environment. We analyzed the parallel algorithm for matrix multiplication in MIMD, and described the implementation of the algorithm. 在概述了并行处理技术与并行算法的基本概念之后,研究了矩阵乘法在分布式处理机上的并行处理技术,对MIMD上的矩阵乘法的并行算法进行了分析,给出了算法的实现步骤。
Estimation of time about the optimal algorithms for matrix multiplication and integer convolution 关于矩阵乘法与整数卷积最佳算法运算量的估计
The inherent parallelism of matrix multiplication and Gauss Jordan elimination is discussed in this paper. 研究了矩阵乘法和高斯约当消元法固有的并行性。
Analysis of algorithms for matrix multiplication 矩阵乘经典算法和维诺格拉得快速算法的研究
Algorithms Analysis of Matrix Multiplication 矩阵乘法的两个算法分析
In this paper, by changing the matrix multiplication algorithm, we can find all shortest paths between nodes. 本文通过改变矩阵的运算法则,利用矩阵相乘的形式求解图中所有的点与点之间的最短路径。
This algorithm reduces the computational complexity efficiently, because it avoids some complicated calculations such as matrix multiplication and singular value decomposition by adopting singular value estimation method. 该算法采用奇异值估计的方法对信道传输矩阵进行处理,避免了矩阵相乘和奇异值分解等复杂运算,有效降低了算法复杂度。
The model contains two of important security protocol modules: shamir secret sharing module and security matrix multiplication module. 模型中包含的最重要的两个安全协议模块为shamir秘密共享模块和安全矩阵积模块。